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Abstract. We compute the automorphisms of the Bousfield-Kan completion
at a prime p of the little two-disks operads and show that they are given by the
pro-p Grothendieck-Teichmüller group. We also show that the Grothendieck-
Teichmüller group acts faithfully on the p-complete stable little disks operad.
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1. Introduction

This paper is concerned with the homotopy automorphisms of the operad D

of little 2-disks with p-torsion coefficients, both unstably and stably. In [Hor17],
we studied the automorphisms of the profinite completion of D. The profinite
completion being a slightly unfamiliar construction for non-nilpotent spaces (such
as the spaces that constitute the little 2-disks operad), we have decided to write this
paper in order to explain the consequences of the main result of [Hor17] in terms
of constructions that homotopy theorists may be more used to (e.g. the Bousfield-
Kan completion and the theory of Hopf cooperads). We also prove results for the
automorphisms of the stable version of D that parallel the known results in the
rational case due to Tamarkin and Willwacher in [Tam02, Wil15].

In [Dri90], Drinfel’d constructs the Grothendieck-Teichmüller group ĜTp. This
is a profinite group that receives a map Gal(Q̄/Q). The group ĜTp is also the group
of units of a monoid ĜTp which is a certain explicit submonoid of the monoid of
endomorphism of (̂F2)p, the pro-p completion of the free group on 2 generators.
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There is a map χ : ĜTp → Z×p called the cyclotomic character that fits in a
commutative diagram

Gal(Q̄/Q)

��

// Ẑ× ∼=
∏
p Z×p

��
ĜTp χ

// Z×p

where the top map is the cyclotomic character of Gal(Q̄/Q) and the right hand side
map is the projection on the p-th factor.

Given an operad P in simplicial sets, and a field k, we can apply the singular
cochains functor levelwise. The resulting object denoted C∗(P,k) is an operad in
the opposite of the category of dg-E∞-algebras over k (we call such a structure a
Hopf cooperad). Our first main theorem is the following.

Theorem 1.1. Let k be an algebraically closed field of characteristic p, then there
is an isomorphism of groups

ĜTp ∼= AutHoHCOpk(C
∗(D,k)),

where the automorphism group on the right is computed in the homotopy category
of Hopf cooperads over k.

This should be compared with the following analogous theorem due to Benoit
Fresse in the rational case.

Theorem 1.2 (Fresse, [Fre17]). Let k be a field of characteristic zero. Then there
is a model for C∗(D,k) that is a commutative Hopf dg-cooperad (i.e. a cooperad in
commutative dg-algebras over k). Moreover there is an isomorphism of groups

GT(k) ∼= AutHoHCOpk(C
∗(D,k)),

where the automorphism group on the right is computed in the homotopy category
of dg-commutative Hopf cooperads over k and GT(k) denotes the group of k points
of the pro-algebraic Grothendieck-Teichmüller group.

Note that in the rational case, any E∞-algebra can be strictified to a commu-
tative dg-algebra but this is not true over fields of positive characteristic. This is
the reason why our theorem is stated for a less rigid notion of Hopf cooperad than
Fresse’s theorem.

Our main result also has a version for the Bousfield-Kan p-completion with
respect to Z/p. Since the Bousfield-Kan completion only preserves products up to
weak equivalences, the levelwise application of completion to an operad only has
the structure of a weak operad (i.e. a homotopy coherent algebra over the algebraic
theory that controls the structure of operads).

Theorem 1.3. Let (Z/p)∞ denotes the Bousfield-Kan completion with respect to
the ring Z/p (as defined in [BK72, Chapter I]). Then there is an isomorphism of
groups

ĜTp ∼= AutHoWOpS((Z/p)∞D),

where the automorphism group is computed in the homotopy category of weak op-
erads in spaces.

Let us mention that, in the category of spaces, we have a rigidification results
giving us an equivalence between the homotopy theory of weak operads in spaces
and the homotopy theory of strict operads in spaces (this is the main result of
[Ber06]).
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Both of these theorems actually follow from the more fundamental Theorem 5.1
about the automorphism of the pro-p-completion of the operad of little 2-disks.
This pro-p-completion is an operad in the ∞-category of pro-p-spaces from which
one can recover the Hopf cooperad C∗(D,k) and the weak operad (Z/p)∞D.

We also study the stable automorphisms of the little 2-disks operads with p-
torsion coefficients. In that case, the rational case is understood by the following
theorm due to Willwacher.

Theorem 1.4 (Willwacher, [Wil15]). There is an isomorphism

GT(Q) ∼= AutHoOpModHQ(HQ ∧ Σ∞+ D),

where the automorphism group on the right is computed in the homotopy category
of operads in HQ-modules

There are two options for what the p-torsion analogue of this theorem should be.
The most obvious thing would be to try to study the automorphisms ofHZ/p∧Σ∞+ D

or equivalently of the operad in chain complexes C∗(D,Z/p). There is an alternative
which is in our sense more natural. Since rationalization is a smashing localization,
the category of HQ-module is exactly the category of rational spectra. Thus the
above theorem can equivalently be stated in the following way.

Theorem 1.5. Let LQΣ∞+ D be the localization of the stabilization of the operad D

at rational homology. Then there is an isomorphism

GT(Q) ∼= AutHoOpSp(LQΣ∞+ D),

where the automorphism group on the right is computed in the homotopy category
of operads in spectra.

In the present paper, we study the automorphisms of the operad in spectra
LpΣ

∞
+ D where Lp denotes localization with respect to ordinary homology with

mod-p coefficients. This localization also coincides with the localization at the
mod-p Moore spectrum for connective spectra. The object LpΣ∞+ D is a more fun-
damental object than HZ/p ∧ Σ∞+ D in the sense that we can construct the latter
from the former but the former remembers more data. For instance the action of
the Steendrod algebra on the homology of a spectrum X can be recovered from
the knowledge of LpX but not from the HZ/p-module HZ/p∧X. We are unfortu-
nately unable to compute the full group of automorphisms of the HZ/p-localization
of Σ∞+ D but we prove the following theorem.

Theorem 1.6. There exists an injective morphism of groups

ĜTp → AutHoOpSpp(LpΣ
∞
+ D),

where the automorphism group on the right is computed in the homotopy category
of operads in HZ/p-local spectra.

This theorem is quite surprising. In the unstable case, it is not hard to prove that
the natural action of ĜTp on the p-adic homotopy type of D is faithful. Indeed,
restricting this action to the space of operations of arity 3, we get an action of ĜTp
on P̂B3, the pro-p-completion of the pure braid group on 3 strands. The pro-p-
completion of the free group on two generators F̂2 sits inside P̂B3 and the action of
ĜTp restricts to the standard action on F̂2, which is faithful by construction. This
is in sharp contrast with the stable case. In that case, we show in Proposition 8.11
that the action of ĜTp on each spectrum LpΣ

∞
+ D(n) factors through the cyclotomic

character and in particular is very far from being faithful.
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2. Pro-p-homotopy theory

We briefly review a few facts about p-adic homotopy theory. We denote by S the
category of simplicial sets with the Kan-Quillen model structure. We denote by S
the ∞-categorical localization of S, also known as the ∞-category of spaces.

Let X be a simplicial set and k a commutative ring. We denote by C∗(X,k) the
cochain complex of singular cochains on X with its differential graded E∞-algebra
structure. This E∞-structure is constructed explicitly in [BF04]. If X = {Xi}i∈I
is a pro-object in S, we denote by C∗(X,k) the E∞-algebra given by the formula:

C∗(X,k) = colimI C∗(Xi,k).

Note that since I is a filtered category this colimit can be computed in cochain
complexes.

By definition of the pro-category, there is a unique cofiltered limit preserving
functor

C∗(−,k) : Pro(S)→ (AlgE∞k )op

such that the composition of this functor with the fully faithful inclusion S →
Pro(S) coincides with the above defined functor C∗(−,k). We denote by CAlgk
the∞-category obtained by inverting the quasi-isomorphism in the category of E∞-
algebras over k. Note that by the main theorem of [Hin15], this coincides with the
∞-category of commutative algebras (in the sense of [Lur17b]) in the symmetric
monoidal ∞-category of chain complexes over k or equivalently in the ∞-category
of Hk-modules (where Hk denotes the Eilenberg-MacLane spectrum associated to
k).

We denote by Sp−fin the smallest∞-subcategory of S containing all the objects
K(Z/p, n) and that is stable under finite homotopy limits and retracts. We denote
by Ŝp the pro-category of Sp−fin. We denote by X 7→ Matp(X) the unique functor
Ŝp → S that preserves limits and that restricts to the inclusion Sp−fin → S. The
functor Matp has a left adjoint for formal reasons. It is denoted X 7→ X̂p or
just X 7→ X̂ when there is no ambiguity and called p-completion. Note that this is
different (but related) to what is sometimes called p-completion in homotopy theory
namely the Bousfield localization with respect to the homology theory H∗(−,Z/p)
or the Bousfield-Kan completion at the ring Z/p.

The ∞-category Ŝp can be presented as the ∞-category underlying the model
category Ŝp constructed by Morel in [Mor96]. The Quillen pair

(2.1) (−) : S� Ŝp : | − |

presents the ∞-adjunction ((̂−)p,Matp). We refer the reader to the next section
for more details about this model structure.

We denote by S0
p−fin the full subcategory of Sp−fin spanned by the connected

spaces. The pro-category Pro(S0
p−fin) is a full subcategory of Ŝp. One can easily

characterize the objects of S0
p−fin in terms of their homotopy groups.

Proposition 2.1. An object X of S is in S0
p−fin if and only if it is connected,

truncated and all of its homotopy groups are finite p-groups.
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Proof. Assume that X is connected truncated and all of its homotopy groups are
finite p-groups. Then X is nilpotent by [BHH17, Proposition 7.3.4.], and by [Goe95,
Proposition V.6.1], X can be written as the limite of a finite tower of principal
fibrations with structure group K(Z/p, n) and hence is in S0

p−fin. The converse is
easy. �

Note that for k a field of characteristic p, the functor C∗(−,k) sends weak equiv-
alences in Ŝp to weak equivalences of E∞-algebras. Hence we have a well-defined
functor C∗(−,k) : Ŝp → (CAlgk)op.

Theorem 2.2 (Mandell, [Man01]). For k an algebraically closed field of charac-
teristic p, the functor

X 7→ C∗(X,k)

induces a fully faithful embedding Pro(S0
p−fin)→ (CAlgk)op.

Proof. This theorem is due to Mandell although we are using a slightly different
language. By definition of the pro-category, it suffices to prove that C∗(−,k) is
fully faithful on S0

p−fin and takes its values in compact objects of CAlgk. Let us
denote by Sk(n) the free E∞-algebra on a generator of degree n. This is a compact
object of the ∞-category CAlgk. By [Man01, Theorem 6.2.], there is a pushout
square

Sk(n)
id−P0 //

��

Sk(n)

��
k // C∗(K(Z/p, n),k)

in the ∞-category CAlgk. This implies that C∗(K(Z/p, n),k) is compact.
For a general object X in Sp−fin, there exists a tower

(2.2) X = Xn → Xn−1 → . . . X0 → ∗
in which each map Xk → Xk−1 is a principal fibration with structure group
K(Z/p, s) with s ≥ 1. At each stage the Eilenberg-Moore spectral sequence con-
verges by [Dwy74] this implies that C∗(X,k) can be obtained as a finite iterated
pushout of compact E∞-algebras. Thus, C∗(X,k) is a compact object of CAlgk.

It remains to prove that C∗(−,k) is fully faithful when restricted to S0
p−fin. But

objects of S0
p−fin are nilpotent, connected, local with respect to H∗(−,Z/p) and

of finite p-type, it follows by the main theorem of [Man01] that C∗(−,k) is fully
faithful when restricted to those spaces. �

3. Model structures on pro-p-spaces and pro-p-groupoids

In this section we give more details about the model category Ŝp constructed
by Morel that presents the ∞-category of pro-p-spaces Ŝp. We also construct an-
other model category Ĝp of pro-p-groupoids that is an essential tool in the proof of
Theorem 5.1.

3.1. Pro-p-spaces. Recall that a profinite set is a topological space which can be
expressed as a cofiltered limit of finite sets with the discrete topology. By Stone
duality, they can be identified with the compact Hausdorff totally disconnected
topological spaces. We denote by Ŝ the category of simplicial objects in profinite
sets. The forgetful functor from profinite sets to sets has a left adjoint that sends
a set S to the inverse limit of all finite quotients of S. Applying these two functor
levelwise, we get an adjunction

(̂−) : S� Ŝ : | − |.
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In [Mor96], Morel constructs a model structure denoted Ŝp on Ŝ. The weak
equivalences in this model structure are the maps that induce isomorphisms on
Z/p-cohomology, the cofibrations are the monomorphisms. Moreover, it follows
from his proof that this model structure is fibrantly generated with generating
fibrations the maps

K(Z/p, n)→ ∗ and L(Z/p, n)→ K(Z/p, n+ 1)

and with generating trivial fibrations the maps

L(Z/p, n)→ ∗.
We refer the reader to [Mor96, Section 1.4] for the relevant definitions. This model
structure fits in a Quillen adjunction

(̂−) : S� Ŝp : | − |.
Together with Barnea and Harpaz, we prove in the last section of [BHH17] that
this Quillen adjunction presents the ∞-categorical adjunction

(̂−) : S� Ŝp : Mat .

3.2. Pro-p-groupoids. Let Ĝ be the pro-category of the category of finite groupoids
(i.e. the category of groupoids with a finite set of morphisms). A finite group G
can be seen as a groupoid with a unique object. We denote by ∗//G that groupoid.
More generally for S a finite set with an action of G on the right. we denote by
S // G the groupoid whose set of objects S and whose set of morphisms from s to
s′ is the set of elements g of G such that s.g = s′.

Proposition 3.1. There is a model structure on Ĝ whose cofibrations are the maps
with the left lifting property against Z/p // Z/p → ∗ and whose trivial cofibrations
are the maps with the left lifting property against the maps Z/p // Z/p → ∗ // Z/p
and ∗ // Z/p→ ∗.

Proof. The proof that this model structure exists can be done exactly as in [Hor17,
Theorem 4.12]. �

From this proof, we also obtain a characterization of the weak equivalences.

Proposition 3.2. The weak equivalences in Ĝp are exactly the maps f : C →
D such that the induced maps H0(D,Z/p) → H0(C,Z/p) and H1(D,Z/p) →
H1(C,Z/p) are isomorphisms (see [Hor17, Definition 4.1 and 4.2] for the defini-
tion of these cohomology groups).

This model structure Ĝp fits in a Quillen adjunction

π : Ŝp � Ĝp : B.

Here the right adjoint B is the obvious variant of the classifying space functor for
profinite groupoids. This fact can easily be deduced from the fact that B sends
the generating fibrations and trivial fibrations to generating fibrations and trivial
fibrations. Now, we also have the following:

Proposition 3.3. The trivial fibrations in Ĝp coincide with the trivial fibrations
in Ĝ with the model structure constructed in [Hor17, Theorem 4.12].

Proof. Since the generating trivial fibrations in Ĝp are trivial fibrations in Ĝ, the
trivial fibrations of Ĝp are a subclass of those of Ĝ. In order to prove the converse, it
suffices, using [Hor17, Lemma 4.13], to check that the maps of the form Codisc(S)→
∗ are trivial fibrations for S a finite set. Any finite set is a retract of the set
(Z/p)n for some n. It follows that the map Codisc(S)→ ∗ is a retract of the map
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Codisc((Z/p)n) → ∗. The latter map is isomorphic to the n-fold product of the
map Z/p // Z/p→ ∗ and hence is a trivial fibration in Ĝp. �

As a corollary of this proposition, we find that the cofibrations in Ĝp are the
same as the cofibrations in Ĝ, that is the maps that are injective on objects. Since
there are more weak equivalences in Ĝp that in Ĝ, the model structure Ĝp is a
Bousfield localization of Ĝ.

4. Weak operads

There exists a small category Ψop with finite products such that the category of
operads in Set is equivalent to the category of product preserving functors Ψop →
Set. To construct this category, we first introduce some notation. We consider
infinite sequences n = (n1, . . . , nk, . . .) of nonnegative integers, with ni = 0 for
all but finitely many i. To such a sequence, we associate the operad F (n) which
corepresents the following functor from operads to sets

P 7→
∞∏
i=0

P (i)ni .

We define Ψ to be the full subcategory of OpSet spanned by the operads F (n). We
observe that in the category Ψop, there is an isomorphism

F (n)× F (m) ∼= F (n + m),

where the sum n+m is componentwise. It follows that the category Ψop has finite
products.

We denote byNΨ the fully faithful inclusion functor from the category of operads
in Set to the category of presheaves over Ψ. Observe that the essential image of
this functor is precisely the category of functors Ψop → Set that preserve finite
products. More generally, for a category C with products, we make the following
definition:

Definition 4.1. Let C be a category with products. An operad in C is a product
preserving functor Ψop → C.

We denote by NΨ the inclusion functor OpC→ CΨop

and we call it the operadic
nerve. Now assume that C is a model category.

Definition 4.2. We say that a diagram X : Ψop → C is a weak operad if it is
objectwise fibrant and for any pair of objects (ψ, τ) in Ψ, the map

X(ψ × τ)→ X(ψ)×X(τ)

is a weak equivalence. We denote by WOpC the category of weak operads in C.

Given an ∞-category C with products, we can define the ∞-category WOpC
of weak operads in C as the ∞-category of product preserving functors Ψop → C.

Proposition 4.3. Let C be a combinatorial or cocombinatorial model category and
C be the underlying ∞-category, then the ∞-categorical localization N(WOpC) of
WOpC at the objectwise weak equivalences is equivalent to WOpC.

Proof. Let Cf be the full subcategory of C spanned by fibrant objects. We will
construct an equivalence N(WOpC) → WOpN(Cf ). Note that if X and Y are
two fibrant objects of C, the diagram

X ← X × Y → Y

induces a limit cone in the ∞-category NC. It follows that the obvious map

N(WOpC)→ Fun(Ψop,N(Cf ))
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factors through WOpN(Cf )
Hence, we have a commutative diagram

N(WOpC) //

��

WOpN(Cf )

��
NFun(Ψop,Cf ) //

��

Fun(Ψop,N(Cf ))

��
NFun(Ψop,C) // Fun(Ψop,N(C))

and we wish to show that the top horizontal map is an equivalence of∞-categories.
A standard argument with combinatorial model categories implies that all the maps
in the bottom square are equivalences. By definition the map WOpN(Cf ) →
Fun(Ψop,N(Cf )) is fully faithful. The map N(WOpCf )→ NFun(Ψop,Cf ) is also
fully faithful as can be seen easily using Dwyer-Kan’s hammock localization model
for the ∞-categorical localization. It follows that the top horizontal map is fully
faithful.

On the other hand, let F be an object in WOpN(Cf ), its image in the category
Fun(Ψop,N(Cf )) is equivalent to a strict functor G : Ψop → Cf since the middle
horizontal map is an equivalence. But the fact that F is in WOpN(Cf ), it follows
immediately that G is in WOpC. Hence the top horizontal map is essentially
surjective. �

Remark 4.4. Instead of the category Ψ, we could have used the dendroidal cate-
gory Ω as in [BdBHR19, Section 4] in order to model homotopy coherent operads.

5. Main theorem in the unstable case

The pro-p completion of spaces commutes with products. Indeed given two
spaces X and Y , there is an obvious map

X̂ × Y → X̂ × Ŷ

which is a weak equivalence as can be seen by computing the cohomology of both
sides.

It follows that a levelwise application of pro-p-completion induces a functor

(̂−) : WOpS→WOpŜp

that is the left adjoint of the functor

Mat : WOpŜp →WOpS

obtained by objectwise application of the functor Mat (since Mat is a right adjoint
it preserves products and hence weak operads).

We denote by D the operad in S given by applying the functor Sing to the
topological operad of little 2-disks. The goal of this section is to prove the following
theorem.

Theorem 5.1. The monoid of endomorphisms of N̂ΨD in the homotopy category
of WOpŜp is ĜTp.

We follow the approach of [Hor17]. Our starting point is the model category Ŝp
constructed by Morel and its groupoid companion Ĝp constructed in Proposition
3.1.
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We have the operad PaB in the category of groupoids which is a groupoid model
of D (see [Hor17, Section 6]). More precisely, there is a zig-zag of weak equivalences
of operads in S connecting BPaB and D (where B denotes the nerve functor).

The levelwise pro-p completion of PaB is an operad P̂aBp in Ĝp. Our definition
of the monoid ĜTp will be the monoid of endomorphisms of P̂aBp which induce the
identity on objects. Note that this is not the standard definition, the monoid ĜTp is
usually defined as the set of elements of Zp× (̂F2)p satisfying certain equations (see
for instance [Dri90, Paragraph 4]). We refer the reader to [Fre17, Section 11.1.] for
a comparison of the two definitions. Note that Fresse focuses on the prounipotent
case but the proof works exactly the same in the pro-p case. We define the group
ĜTp as the group of units of ĜTp.

Let I[1] be the groupoid completion of the category [1]. This is the groupoid that
corepresents the functor that sends a groupoid to the sets of its morphisms. The
endofunctor C 7→ CI[1] in the category Ĝp preserves products and hence induces
an endofunctor O 7→ OI[1] on the category of operads in Ĝp. Using this functor,
we can define the notion of a homotopy between two maps in OpĜp. Namely, a
homotopy between f and g two maps P→ Q is a map P→ QI[1] whose evaluation
at the two objects of I[1] is f and g. We can form the category πOpĜp whose
objects are the operads in Ĝp and morphisms are morphisms in OpĜp modulo the
homotopy relation.

Our first step is the following proposition.

Proposition 5.2. The map ĜTp → End(P̂aB) induces an isomorphism

ĜTp → EndπOpĜp
(P̂aB).

Proof. This is done exactly as [Hor17, Theorem 7.8.]. �

The levelwise application of profinite completion induces a weak equivalences
preserving functor:

(̂−) : WOpG→WOpĜp.

Proposition 5.3. The action of ĜTp on P̂aBp induces an isomorphism

ĜTp
∼= EndHo WOpĜp

(NΨP̂aB).

Proof. This can be proved as [Hor17, Proposition 8.1.]. �

Now, we are ready to prove Theorem 5.1.

Proof. By Proposition 4.3, there is an isomorphism

EndHo WOpŜp
( ̂NΨBPaB) ∼= EndHoWOpŜp

( ̂NΨBPaB).

Thus, using the previous proposition, it is enough to prove that there is an isomor-
phism of monoids

EndHo WOpĜp
(NΨP̂aB) ∼= EndHo WOpŜp

( ̂NΨBPaB).

This is done in the profinite case in [Hor17, Proposition 8.3.] using the goodness of
the pure braid groups (cf. [Hor17, Corollary 5.11.]). The fact that the pure braid
groups are good as profinite groups implies immediately that they are p-good.
Hence the proof of [Hor17, Proposition 8.3.] applies mutatis mutandi. �
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Using Theorem 5.1, we can prove Theorem 1.1 and Theorem 1.3. For k a com-
mutative ring, we denote by HCOpk the ∞-category (WOp((CAlgk)op))op and
call it the ∞-category of Hopf cooperads. It is very likely that if k is a field of
characteristic 0, then the ∞-category of Hopf cooperads can be presented as the
∞-category underlying the model category constructed by Fresse in [Fre17]. The
latter is a model structure on the category of strict cooperads in CDGAs over k
where the weak equivalences are the quasi-isomorphisms. However such a result
should not be expected in characteristic p which justifies the use of ∞-categories.

Theorem 5.4. Let k be an algebraically closed field of characteristic p. The monoid
of endomorphisms of C∗(NΨD,k) in the category HoHCOpk is ĜTp.

Proof. The functor C∗(−,k) : Ŝp → CAlgop
k preserves products and thus induces

a functor
C∗(−,k) : WOpŜp → HCOpop

k .

From Proposition 2.2, we deduce that there is a fully faithful embedding of ∞-
categories

C∗(−,k) : WOp(Pro(S0
p−fin))→ HCOpop

k .

Moreover, the obvious map

C∗(N̂ΨD,k)→ C∗(NΨD,k)

is an equivalence of Hopf cooperads. �

Now, we come to the proof of Theorem 1.3. We start with the following theorem.

Theorem 5.5. The materialization functor Mat : Ŝp → S induces an isomorphism

EndHoWOpŜp
(N̂ΨD) ∼= EndHoWOpS(Mat(N̂ΨD)).

Proof. This can be proved exactly as [Hor17, Corollary 8.12] using the fact that the
p-completion of the pure braid groups are strongly complete. This last fact follows
from the main theorem of [NS07] together with the fact that those profinite groups
are topologically finitely generated. �

Now we wish to compare the Bousfield-Kan construction and the functor X →
Mat(X̂). We first construct a more explicit model of X 7→ Mat(X̂). Using the
Quillen adjunction 2.1 and the sentence following it, we see that X 7→ Mat(X̂)

can be modeled by X 7→ |(X̂)f | where the f -superscript denotes a functorial fi-
brant replacement. As explained in [Mor96], any object P in Ŝ can be functorially
expressed as P = limR∈R(P ) P/R where R(P ) is the filtered poset of continuous
equivalence relations on P that are such that P/R is levelwise finite.

For X a simplicial set, let us denote by Res•(X) the cosimplicial simplicial set
whose totalization is (Z/p)∞(X). Morel shows in [Mor96, Proposition 2], that for
P an object of Ŝ, the pro-object

{Tots(Res•(P/R))}s∈N,R∈R(P )

is a fibrant replacement of P in Ŝp. It follows that the functor X 7→ Mat(X̂) is
equivalent to the functor

M(X) := lims∈N,R∈R(X̂) Tots(Res•(X̂/R)).

There is also an obvious natural transformation

(Z/p)∞(X) := lims∈N Tots(Res•(X))→M(X).

Lemma 5.6. The above natural transformation is an equivalence on each simplicial
set that are weakly equivalent to a levelwise finite simplicial set.
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Proof. Since both functor are weak equivalence preserving, it suffices to prove this
claim for X a levelwise finite simplicial set. In that case X̂ = X and the poset of
continuous equivalence relations with a levelwise finite quotient has an initial object.
It follows that for such an X, the natural transformation (Z/p)∞(X) → M(X) is
actually an isomorphism. �

We can now prove Theorem 1.3.

Theorem 5.7. The Ψ-diagram (Z/p)∞(NΨD) is an object of WOpS and there is
an isomorphism

ĜTp
∼= EndHoWOpS((Z/p)∞(NΨD)).

Proof. The functor (Z/p)∞ preserves products up to homotopy by [BK72, I.7.2],
therefore (Z/p)∞(NΨD) is in WOpS. The spaces D(n) have the homotopy type
of finite CW-complexes. Thus the previous lemma implies that (Z/p)∞(NΨD) →
M(NΨD) is an equivalence in WOpS. But now, using Theorem 5.5, we have an
isomorphism

ĜTp
∼= EndHoWOpS(M(NΨD)).

�

Remark 5.8. In [BdBHR19], we proved that the group ĜT is also the group of
automorphisms of the profinite completion of the framed little disks operad. The
argument above can be applied in order to prove that the group ĜTp is the group
of automorphisms of the p-completed framed little disks operad. The framed little
disks version of Theorem 1.1 and Theorem 1.3 also hold.

6. Review of p-complete stable homotopy theory

Given a stable ∞-category C, we denote by mapC(−,−) the mapping spectrum
and by MapC(−,−) the mapping space (which is the infinite-loop space of the
mapping spectrum).

For E a spectrum, we denote by LpE the localization of E with respect to the
homology theory represented by SZ/p (the Moore spectrum of the group Z/p).
Note that by [Bou79, Theorem 3.1.], this coincides with the HZ/p-localization if
E is bounded below. For E a bounded below spectrum with finitely generated
homotopy groups, the map E → LpE induces the map E∗ → E∗⊗Zp on homotopy
groups.

We denote by Spp−fin the smallest full stable subcategory of Sp containing the
spectrum HZ/p. This can also be described as the full subcategory of Sp spanned
by the spectra whose homotopy groups are finite p-groups and are almost all 0.

We denote by Ŝpp the ∞-category Pro(Spp−fin). The inclusion Spp−fin → Sp

induces a limit preserving functor Mat : Ŝpp → Sp. This has a left adjoint denoted
X 7→ X̂.

We denote by τn the n-th Postnikov section endofunctor on Sp. By the universal
property of the pro-category, there is a unique endofunctor of Ŝpp that coincides
with τn on Spp−fin and commutes with cofiltered limits. We still denote this
functor τn. For A a pro-p abelian group, we denote by ĤA the object of Ŝpp given
by applying the Eilenberg-MacLane functor to an inverse system of finite abelian
group whose limit is A. Note for instance that ĤZp lives in Ŝpp while HZp lives
in Sp. There is an obvious weak equivalence HZp → Mat(ĤZp).

We denote by Spp the full∞-subcategory of Sp spanned by spectra that are local
with respect to SZ/p. We denote by Spftp the full∞-subcategory of Sp spanned by
bounded below spectra whose homotopy groups are finitely generated Zp-modules.
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Note that Spftp is a full ∞-subcategory of Spp. Note also that if X is a bounded
below spectrum that has finitely generated homotopy groups, then LpX is in Spftp .

Similarly, we denote by Ŝp
ft

p the full∞-subcategory of Ŝpp spanned by pro-spectra
that are bounded below and whose homotopy groups are finitely generated Zp-
modules (given a pro-spectrum X = limi∈I Xi with I a cofiltered category, its n-th
homotopy group is, by definition, the pro-abelian group {πn(Xi)}i∈I).

Lemma 6.1. The map HZp → Mat(ĤZp) is adjoint to a weak equivalence ĤZp →
ĤZp.

Proof. It suffices to show that for any spectrum F in Spp−fin, the map

map
Ŝpp

(ĤZp, F )→ map(HZp, F )

is a weak equivalence. Since both sides of the equation are exact in F , it suffices to
do it for F = HZ/p. Hence we are reduced to proving that the map

colimnH
k(HZ/pn,Z/p)→ Hk(HZp,Z/p)

is an isomorphism for each k. Since Z/p is a field, cohomology is dual to homology
and it suffices to prove that Hk(HZp,Zp) is isomorphic to {Hk(HZ/pn,Z/p)}n in
the category of pro-abelian groups. In [Lur17a, Proposition 3.3.10.], Lurie shows
that there is an isomorphism of pro-abelian groups:

Hk(Σ−mΣ∞K(Zp,m),Z/p) ∼= {Hk(Σ−mΣ∞K(Z/pn,m),Z/p)}n.

By Freudenthal suspension theorem, for any abelian group A, the map

Σ−mΣ∞K(A,m)→ HA

is roughly m-connected. Thus, taking m large enough, Lurie’s result gives what we
need. �

We denote by τn the fiber of the map id → τn, for τn : Ŝpp → Ŝpp and for
τn : Sp→ Sp. That is, there are cofiber sequences

τnX → X → τnX.

for all X that are moreover functorial in X (where X lives either in Sp or in Ŝpp).

Lemma 6.2. Let X be an object of Ŝpp. The following conditions on X are
equivalent.

(1) The map τnX → X is an equivalence.
(2) The map τnX → ∗ is an equivalence.
(3) For all k ≤ n, the group Hk(X,Z/p) is zero.
(4) If Y is such that Y → τnY is an equivalence, then the space Map(X,Y ) is

trivial.
If X satisfies these equivalent conditions, we say that X is n-connected.

Proof. The equivalence of (1) and (2) is obvious. The implication (1) =⇒ (3) is
obvious.

We now prove the equivalence of (2) and (4). For this we consider the category
(Ŝpp)≤n which is the pro-category of the∞-category of spectra Y with the following
properties:

• The homotopy groups of Y are almost all zero.
• The non-zero homotopy groups of Y are finite p-groups.
• The homotopy groups of degree larger than n are all 0.
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This is canonically identified with the full subcategory of Ŝpp spanned by those Y
such that Y → τnY is an equivalence. Now, one easily verifies that the inclusion
(Ŝpp)≤n has a left adjoint given by X 7→ τnX. The desired equivalence follows
from this adjunction.

We prove (3) =⇒ (4). If X satisfies (3), we easily deduce by a Postnikov type
argument that condition (4) is satisfied for all spectra Y that are bounded below,
have p-finite homotopy groups and satisfy Y → τnY is an equivalence. Now, let
Y be an object of Ŝpp that is such that Y → τnY is an equivalence. Then Y can
be written as a cofiltered limit of spectra Yi that are bounded below, have p-finite
homotopy groups and satisfy Y → τnY is an equivalence. The assertion (4) follows
from the fact that the functor Map(X,−) commutes with limits. �

Lemma 6.3. Let Y be an (−1)-connected spectrum in Ŝp
ft

p , then Mat(Y ) is (−1)-
connected.

Proof. The claim is true if Y is also m-truncated for some m. Indeed, in that case
a Postnikov tower argument allows us to reduce to the cases of Y = ĤZp and Y =
HZ/pk in which case the result is trivial. In general, we may write Y as the limit
of its Postnikov tower Y ' limm τmY . Then, we have Mat(Y ) ' limm Mat(τmY ).
By Milnor’s short exact sequence, we see that πn(Mat(Y )) ∼= limm πn(Mat(τmY )).
In particular, Mat(Y ) is (−1)-connected. �

Lemma 6.4. Let X be any spectrum, then the obvious map X̂ → limn τ̂nX is a
weak equivalence.

Proof. Since the completion functor is exact, there are fiber sequences

τ̂nX → X̂ → τ̂nX

that are functorial in n. Hence, it suffices to prove that limn τ̂nX is contractible.
As in Lemma 6.1, it is enough to prove that for any k, the group Hk(τnX,Z/p)
eventually becomes trivial for n large enough. But this follows immediately from
the fact that τnX is n-connected. �

Proposition 6.5. Let Y be an object of Spftp . Then the unit map Y → Mat(Ŷ ) is
a weak equivalence.

Proof. Let us call a spectrum Y good if this is the case. The good spectra form
a triangulated subcategory of Sp. This subcategory contains HZ/p. According to
Lemma 6.1, it also contains HZp. Hence, it contains τnY for any n and any Y in
Spftp .

Thus, for Y in Spftp , there is an equivalence τnY → Mat(τ̂nY ) for each n. In
order to prove that Y is good, it will be enough to prove that the map

Mat(Ŷ )→ limn Mat(τ̂nY )

is a weak equivalence. Since Mat is a right adjoint, it is enough to prove that the
obvious map Ŷ → limn τ̂nY is a weak equivalence but this is the content of Lemma
6.4. �

The following corollary compares the two notions of p-completion for spectra.

Corollary 6.6. There is a natural transformation from Lp to Mat(−̂) that is a weak
equivalence when restricted to spectra X such that LpX is in Spftp . In particular, it
is a weak equivalence on spectra that are bounded below and have finitely generated
homotopy groups.
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Proof. We first make the observation that for any spectrum X, the obvious map
X̂ → L̂pX is a weak equivalence. Indeed, it suffices to prove that for any F in
Spp−fin, the map X → LpX induces a weak equivalence

map(LpX,F )→ map(X,F ),

but this follows from the fact that F is local with respect to SZ/p.
Thus, there is a natural transformation of endofunctors of Sp:

α(X) : LpX → Mat(L̂pX) ' Mat(X̂)

Proposition 6.5 tells us that α(X) is a weak equivalence whenever Lp(X) is in
Spftp as desired. �

Proposition 6.7. Let Y be an object of Ŝp
ft

p , then the counit map M̂at(Y ) → Y
is an equivalence.

Proof. This is obviously true for Y in Spp−fin. This is true for Y = ĤZp by
Lemma 6.1. Hence, this is true for any pro-spectrum of the form ĤA where A is
a finitely generated abelian pro-p group. An easy Postnikov induction shows that
this is true for any object Y of Ŝp

ft

p that is bounded above (i.e Y → τnY is an
equivalence for some n).

Now a general Y is the limit of the Postnikov tower: Y ' limn τnY . The functor
Mat is a right adjoint and hence preserves limits. Since n-truncated spectra are
stable under limits, the map Mat(Y )→ Mat(τnY ) has an n-truncated target and an
n-connected fiber by Lemma 6.3, hence it exhibits Mat(τnY ) as the n-truncation of
Mat(Y ). From these two facts, we see that are reduced to proving that the obvious
map

(lim
n
τn Mat(Y ))∧ → Y

is a weak equivalence. Finally, using Lemma 6.4, we can pull the Postnikov limit
outside of the completion and we deduce that the counit is a weak equivalence as
desired. �

We can now deduce our main result.

Theorem 6.8. The functors Mat and (̂−) are mutually inverse equivalences be-

tween Ŝp
ft

p and Spftp .

Proof. Using Proposition 6.7 and Proposition 6.5, it is enough to prove that Mat

sends Spftp to Ŝp
ft

p and that (̂−) sends Ŝp
ft

p to Spftp .

Let X be a bounded spectrum in Ŝp
ft

p , that is X → τnX is an equivalence for n
large. Using Postnikov induction, we see that X is in the triangulated subcategory
of Ŝpp generated by ĤZp. Since Mat(ĤZp) ' HZp and Mat is exact,we deduce

that Mat(X) is in Spftp . Now if X is in Ŝp
ft

p , we can write it as limn τnX. The
functor Mat preserves limits and the Postnikov tower as was observed in the proof
of Proposition 6.7. But a spectrum is in Spftp if and only if all of its Postnikov
sections are in Spftp thus Mat(X) is in Spftp as desired.

Now, we prove the converse direction. Let Y be a spectrum in Spftp . According

to Lemma 6.4, in order to prove that Ŷ is in Ŝp
ft

p , it suffices to prove that τ̂nY is

in Ŝp
ft

p for all n. Hence we may assume that Y is bounded (i.e. Y → τnY is an
equivalence). Again, by a Postnikov induction, we deduce that it suffices to prove

that ĤZp is in Ŝp
ft

p . This follows from Lemma 6.1. �
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7. Symmetric monoidal structure

We recall the theory of symmetric monoidal localizations of∞-categories. Given
a symmetric monoidal ∞-category C, a collection S of morphisms in C is said to
be compatible with the symmetric monoidal structure if for any object c ∈ C, the
functor

c⊗− : C→ C

sends the maps of S to maps of S. In this situation, it can be shown that the
localization C[S−1] can be given an essentially unique symmetric monoidal struc-
ture that makes the localization functor C → C[S−1] into a symmetric monoidal
functor. This fact is proved in [Hin16, Section 3].

From this general theory, we deduce that the ∞-category Spp has a symmetric
monoidal structure denoted ∧p. Given two spectra X and Y in Spp, the spectrum
X ∧p Y has the homotopy type of Lp(X ∧ Y ).

Similarly, the category Ŝpp has a symmetric monoidal structure simply denoted
∧. We construct it by first constructing a symmetric monoidal structure on Pro(Sp)
of all pro-spectra. This symmetric monoidal structure is the unique one such that
∧ preserves cofiltered limits separately in each variable and that coincides with the
standard monoidal structure on Sp. Then we use the following proposition that
shows that Ŝpp can be seen as the localization of Pro(Sp) at a class of maps that
is compatible with the symmetric monoidal structure.

Proposition 7.1. The obvious map Ŝpp → Pro(Sp) exhibits Ŝpp as the localiza-
tion of Pro(Sp) with respect to the HZ/p-cohomology equivalences.

Proof. The ∞-category Pro(Sp) can be identified with the opposite of the ∞-
category of exact functors from spectra to spectra. With this description, the left
adjoint Pro(Sp) → Ŝpp takes a functor to its restriction to Spp−fin. It follows
immediately that if a map is sent to an equivalence by this left adjoint, it must be
an HZ/p-cohomology equivalence. The converse follows from the observation that
Spp−fin can be described as the stable ∞-subcategory of Sp generated by HZ/p.
Thus, if f : X → Y is an HZ/p-cohomology equivalence, the map map(Y, F ) →
map(X,F ) is an equivalence for any F ∈ Spp−fin. �

From this construction of the symmetric monoidal structure on Ŝpp, we deduce
the following proposition.

Proposition 7.2. The completion functor −̂ : Sp → Ŝpp can be promoted to a
symmetric monoidal functor.

Proof. We can write it as the following composite

Sp→ Pro(Sp)→ Ŝpp,

where the first map and second map are symmetric monoidal. �

The functor Sp→ Ŝpp inverts the p-local equivalences. It follows that it factors
through Spp and by the universal property of the symmetric monoidal localization,
we get the following proposition.

Proposition 7.3. The functor (̂−) : Spp → Ŝpp can be promoted to a symmetric
monoidal functor.

We can now state and prove the main result of this section.

Proposition 7.4. The functors Mat and (̂−) can be promoted to mutually inverse

symmetric monoidal equivalences between Spftp and Ŝp
ft

p .
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Proof. In light of the above proposition and of Theorem 6.8, it suffices to prove
that Spftp is stable under the symmetric monoidal structure of Spp. That is, we
want to show that, given two spectra X and Y in Spftp , the smash product X ∧p Y
is in Spftp . Using the cofiber sequences

τnX ∧p Y → X ∧p Y → τnX ∧p Y

and the fact that Z/p-localization preserves connectivity (see [Bou79, Proposition
2.5.]) we see that for each integer k, the homotopy group πk(X∧pY ) coincides with
πk(τnX ∧p Y ) for n large enough. Hence we can assume without loss of generality
that X is truncated. Using again an induction on the number of non-zero homotopy
groups of X, we can reduce to the case where X = HA with A a finitely generated
Zp-module. We can then form a similar reduction on the Y variable and reduce
ourselves to proving that, if A and B are two finitely generated Zp-modules, the
group π0(Lp(HA ∧ HB)) is a finitely generated Zp-module. We claim that in
general, we have the formula

π0(Lp(HA ∧HB)) ∼= A⊗Zp B.

In order to prove this, we may reduce to the case when B = Zp or B = Z/pk for
some k. We do the case B = Zp, the other case being similar but easier. By the
fact that the localization Lp is symmetric monoidal, we deduce that there is an
equivalence

Lp(HA ∧HZ) ' Lp(HA ∧HZp).
Moreover, since Lp preserves connectivity, we have

A = π0(Lp(HA ∧ S)) ∼= π0(Lp(HA ∧HZ)) ∼= π0(Lp(HA ∧HZp))

as desired. �

8. Stable automorphism

8.1. Weak operads vs operads. We denote by OP the prop that defines the
structure of an operad. That is, OP is a symmetric monoidal category and if
(C,⊗) is another symmetric monoidal category, there is an equivalence of categories
between the category of operads in C and the category of symmetric monoidal
functors OP → C. We denote by NOP the underlying symmetric monoidal ∞-
category.

Definition 8.1. Let C be a symmetric monoidal ∞-category. We define the ∞-
categoryOpC of operads inC to be the∞-category of symmetric monoidal functors
NOP→ C

Construction 8.2. We construct a symmetric monoidal functor OP→ Ψop where
Ψop is given its cartesian symmetric monoidal structure (see Section 4 for the def-
inition of Ψ). Consider the collection of representable functors on the category of
operads in sets: OpSet(F (n),−) where F (n) denotes the free operad on an oper-
ation of arity n. This collection has the structure of an operad in the category of
functors, which by Yoneda’s lemma gives the collection of objects F (n) the struc-
ture of an operad in the category Ψop. This operad is classified by a symmetric
monoidal map u : OP→ Ψop.

Construction 8.3. We construct, for any ∞-category C with products, a functor

u∗ : WOpC→ OpC,

where OpC is the ∞-category of symmetric monoidal functors

NOP→ (C,×)



AUTOMORPHISMS OF THE LITTLE DISKS OPERAD WITH TORSION COEFFICIENTS 17

The functor u∗ is obtained via the following zig-zag

WOpC
'←− Fun⊗(N((Ψop)),C)→ OpC,

where the left hand side equivalence is given by [Lur17b, Proposition 2.4.1.7] and the
right hand side map is induced by precomposition with the functor u constructed
in the previous paragraph.

We have the ∞-category OpSp of operads in spectra. We can also form the ∞-
category OpSpp of operads in Spp. The localization functor Lp induces a functor

OpSp→ OpSpp.

8.2. Unipotent completion. We refer the reader to appendix A of [HM03] for
background material on the theory of unipotent completion. If G is a discrete group
and k is a field of characteristic 0, there exist a prounipotent group Gk (denoted Gun/k
in [HM03]) which is universal with respect to maps G→ U(k) with U a unipotent
algebraic group over k. Note that, by [HM03, Proposition A.1], the group Gk is
just (GQ)×Q k. Now if G and k have topologies, one can also form the continuous
pro-unipotent completion of G over k. This is a prounipotent group over k denoted
Gk and which is universal with respect to continuous maps G → U(k) for U a
unipotent group scheme over k.

The important result for us will be the following:

Theorem 8.4. Let G be a finitely generated discrete group and p be a prime num-
ber, then there is a natural isomorphism of prounipotent groups over Qp:

GQp
∼= (Ĝp)Qp .

Proof. This is [HM03, Theorem A.6]. �

The important takeaway of this theorem is that the Qp unipotent completion of
G can be constructed functorially from the pro-p completion of G.

If C is a groupoid with finitely many object and k is a field, we introduce the
k-unipotent completion Ck of C which is universal with respect to maps from C to
unipotent groupoids over k inducing the identity on objects. (A unipotent groupoid
is a groupoid enriched in schemes over k with the property that the automorphisms
of any objects is a unipotent group.) In practice, if C is connected, then C is
abstractly isomorphic to G × Codisc(S) (where Codisc(S) denotes the groupoid
whose set of objects is S and in which any two objects are uniquely isomorphic).
In that case Ck is isomorphic to Gk × Codisc(S).

8.3. The pro-algebraic Grothendieck-Teichmüller group. Recall the operads
PaB of parentesized braids. Since all the objects sets are finite, we can form its
pro-unipotent completion PaBQ over Q. For R a Q-algebra, we define a group
GT(R) via the formula

GT(R) = Aut0((PaBQ)×Q R),

where Aut0 denotes the group of automorphisms of operads (in the category of
pro-algebraic groupoids over R) inducing the identity on objects. It is proved by
Drinfel’d in [Dri90] that GT is an affine group scheme over Q that sits in a short
exact sequence

1→ GT1 → GT→ Gm → 1

where GT1 is prounipotent. By work of Brown, the group GT receives an injective
map from the Tannakian fundamental group of the category of MTM(Z) of mixed
Tate motives over Z (see [Bro12])

By Theorem 8.4 (or rather the obvious generalization for groupoids), we have
an isomorphism of operads PaBQp

∼= (P̂aBp)Qp . Therefore the action of ĜTp on
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P̂aBp induces a continuous map ĜTp → GT(Qp). This map is an injection (see
[Dri90]). It is also compatible with the cyclotomic character in the sense that it fits
in a commutative square

ĜTp

��

χ // Z×p

��
GT(Qp) // Q×p

Theorem 8.5 (Tamarkin). Let k be a field of characteristic 0. There is an injective
map

GT(k)→ AutHoOpModHk(Hk ∧ Σ∞+ D).

Proof. Let PaB>0 be the operad obtained from PaB by replacing the arity 0 opera-
tions by the empty groupoid. Let PaB>0

k be its pro-unipotent completion at the field
k. It comes with an action of the group GT(k) by [Dri90]. As explained in [BN98], a
choice of a Drinfeld’s associator induces an isomorphism PaB>0

k
∼= PaCD>0

k where
PaCDk is the operad of chord diagrams. This choice of isomorphism induces a
commutative square

GT1(k) //

∼=
��

Aut(PaB>0
k )

∼=
��

GRT1(k) // Aut(PaCD>0
k )

The bottom map of this commutative diagram restricts to a morphism

GRT1(k)→ Aut0
HoOpChk

(C∗(PaCD
>0
k ,k)).

where Aut0 denotes the group of automorphisms that induce the identity on homol-
ogy. Both the source and the target of this map are pro-unipotent groups. Hence,
this map is an injection if and only if the induced map on the Lie algebras is an
injection. This last fact is exactly the main theorem of [Tam02], that is the map

grt1 → H0(Der(C∗(PaCDk,k))

is an injection of pro-nilpotent Lie algebras. From this, we deduce that the map

GT1(k)→ Aut0
HoOpChk

(C∗(PaB
>0
k ,k))

is injective. On the other hand, the action of GT(k) on PaB>0
k extends to an action

of PaBk. The induced map

GT1(k)→ Aut0
HoOpChk

(C∗(PaBk,k))

factors the previous map and hence must also be injective. This map fits in the
following commutative diagram of short exact sequences

1 // GT1(k) //

��

GT(k) //

��

k× //

��

1

1 // Aut0(C∗(PaBk)) // Aut(C∗(PaBk)) // Aut(H∗(PaBk)) // 1

The right vertical map in this diagram is an isomorphism. It follows that the
middle vertical map is injective. Finally the equivalence of symmetric monoidal
∞-categories between Chk and ModHk induce an isomorphism

AutHoOpChk(C∗(D,k)) ∼= AutHoOpModHk(Hk ∧ Σ∞+ D).

�
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Remark 8.6. In [Wil15], Willwacher promotes this result to an isomorphism

GT(k) ∼= AutHoOpChk(C∗(D
>0,k)).

We will however not need this stronger result.

8.4. Proof of Theorem 1.6. Our goal is now to prove a Theorem 1.6 which is a
p-complete version of Tamarkin’s theorem.

For X a spectrum, we define HZp ZX by the following formula

HZp ZX := limnHZ/pn ∧X,

where the limit is taken in the ∞-category of HZp-modules. This construction
defines a functor from spectra to HZp-modules. Note that there is a natural trans-
formation

HZp ∧X → HZp ZX.
We will need the following two lemmas about this construction.

Lemma 8.7. For any bounded below spectrum X, the map X → LpX induces a
weak equivalence

HZp ZX → HZp Z LpX.

Proof. First, we observe that all the spectra HZ/pn are in the same Bousfield class
(i.e. define the same localization functor). It suffices to prove that they have the
same acyclics. The formula

HZ/p ∧X ' HZ/p ∧HZ/pn HZ/pn ∧X

shows that HZ/pn-acyclics are HZ/p-acyclics. Conversely, the Bockstein cofiber
sequences

HZ/p→ HZ/pn+1 → HZ/pn

inductively implies that HZ/p-acyclics are HZ/pn-acyclics for all n.
From this observation and the fact that for bounded below spectra, Lp coincides

with HZ/p-localization, we deduce that the map X → LpX induces an equivalence
of HZp-modules HZ/pn ∧ X → HZ/pn ∧ LpX for each n. Taking the homotopy
limit with respect to n gives the desired result. �

Lemma 8.8. The natural transformation

HZp ∧X → HZp ZX

is a weak equivalence on finite spectra.

Proof. This map is obviously a weak equivalence on the sphere spectrum. Moreover
both functors are exact. Therefore the map must be an equivalence on any finite
spectrum. �

Now, we extend the functor HZp Z− to operads. This is easy to do since limits
in the ∞-category of operads in HZp-modules are computed aritywise. Thus for O
an operad in spectra, we may define

HZp Z O := limnHZ/pn ∧ O,

where the limit is taken in the∞-categoryOpModHZp of operads inHZp-modules.
We moreover have an equivalence

(HZp Z O)(n) ' HZp Z O(n).

We may now state the main theorem of this section.

Theorem 8.9. There is a faithful action of ĜTp on LpΣ
∞
+ D in the homotopy

category of OpSpp.
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Proof. The infinite loop space functor Ω∞ is a finite limit preserving functor

Ω∞ : Spp−fin → Sp−fin,

therefore by the universal property of pro-categories it extends uniquely to a limit
preserving functor Ω∞ : Ŝpp → Ŝp. We denote its left adjoint by Σ∞+ . If we
identify the ∞-category Ŝpp with the opposite of the ∞-category of exact functors
Spp−fin → S, the functor Σ∞+ can be informally described by the formula

X = {Xi}i∈I ∈ Pro(Sp−fin) 7→ colimi MapSp(Σ∞+ Xi,−).

Now, we can consider the following diagram of left adjoint functors

S
(̂−) //

Σ∞+

��

Ŝp

Σ∞+
��

Sp
(̂−)

// Ŝpp

It commutes because the corresponding diagram of right adjoint commutes. From
this fact and Corollary 6.6, we deduce that if X is a space which is such that Σ∞+ (X)
has finitely generated homotopy groups (e.g. if X has the homotopy type of a finite
CW-complex), then there is a weak equivalence

Lp(Σ
∞
+ X) ' Mat(Σ∞+ (X̂)).

Now, we claim that the functor Σ∞+ : Ŝp → Ŝpp can be given the structure of a
symmetric monoidal functor. In order to do so, we observe that it can be written
as the following composite of symmetric monoidal functors

Ŝp → Pro(S)
Σ∞+−−→ Pro(Sp)

L−→ Ŝpp,

where the first map is just the inclusion and the map L is the localization with
respect to the HZ/p-cohomology equivalences.

From the above two observations, we deduce that Mat(Σ∞+ D̂) has an operad
structure and is weakly equivalent to Lp(Σ∞+ D). But we also know that Mat(Σ∞+ D̂)

is equipped with an action of the group ĜTp. Transferring this action along the
weak equivalence we deduce that LpΣ∞+ D also has an action of ĜTp.

Thus, applying the functor HZpZ and using Lemma 8.7, we find a weak equiva-
lence of operads in HZp-modules

HZp Z Σ∞+ D→ HZp Z LpΣ∞+ D

where the target has an action of ĜTp. Now, using Lemma 8.8, we find that the
map

HZp ∧ Σ∞+ D→ HZp Z Σ∞+ D

is a weak equivalence of operads in HZp-modules. Combining these two equiva-
lences, we have an equivalence of operads in HZp-modules.

HZp ∧ Σ∞+ D→ HZp Z LpΣ∞+ D

where the target comes with an action of ĜTp. Now, we can apply the functor
HQp∧HZp to this weak equivalence and we find a weak equivalence of operads in
HQp-modules:

HQp ∧ Σ∞+ D→ HQp ∧HZp HZp Z LpΣ∞+ D
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where the target comes with an action of ĜTp. Thus, taking the automorphisms
in the homotopy category of operads in HQp-modules, we find a map

ĜTp → AutHoOpModHQp
(HQp ∧ Σ∞+ D)

that factors through GT(Qp) as follows:

ĜTp → GT(Qp)→ AutHoOpModHQp
(HQp ∧ Σ∞+ D)

where the first map is the inclusion and the second map is the map that appears in
Theorem 8.5. From that theorem, we deduce that the action of ĜTp onHQp∧Σ∞+ D

is faithful. Since this action comes from an action on LpΣ∞+ D, we deduce that the
action of ĜTp on that operad is also faithful as desired. �

Remark 8.10. In light of the above Theorem it seems reasonable to expect that
ĜTp is indeed the group of automorphisms of LpΣ∞+ D. At this stage, a stable

homotopy theorist will be tempted to introduce the groups ĜT
(n)

p of automorphisms
of LnΣ∞+ D where Ln denotes the localization with respect to the height n and prime
p Morava E-theory spectrum. These groups fit into a tower

. . .→ ĜT
(n)

p → ĜT
(n−1)

p → . . .→ ĜT
(0).

p

By the main theorem of [Wil15], we have ĜT
(0)

p
∼= GT(Qp), on the other hand, the

limit of this tower is the group of automorphisms of LpΣ∞+ D which is conjecturally

the group ĜTp. In any case, since the map ĜTp → ĜT
(0)

p is injective, and factors

through ĜT
(n)

p , we deduce that for each n, there is an inclusion ĜTp ⊂ ĜT
(n)

p .

We conclude this paper with the following Proposition that shows that in the
stable case, the action of ĜTp on LpΣ∞+ D quite trivial in each arity.

Proposition 8.11. For each n, the action of ĜTp on LpΣ∞+ D(n) factors through
the cyclotomic character.

Proof. First, we observe that Σ∞+ D(n) has the homotopy type of a finite wedge
of spheres. Moreover any element of ĜTp that is in the kernel of the cyclotomic
character acts trivially on H∗(D(n),Zp) ∼= π∗(HZp ∧p LpΣ∞+ D(n)). Indeed, since
the action of ĜTp is compatible with the operad structure it suffices to check it in
arity 2 which is where the generators of H∗(D(n),Zp) live. Thus the result follows
from the following lemma. �

Lemma 8.12. Let X be a finite wedge of p-completed spheres equipped with a self-
map g. Assume that g induces the identity on π∗(X ∧p HZp), then g is homotopic
to the identity.

Proof. Let us denote by H∗(X) the homotopy groups of X ∧p HZp. The Atiyah-
Hirzebruch spectral sequence gives us an isomorphism

π∗(X) ∼= H∗(X)⊗Zp π∗(Sp)

that is natural with respect to endomorphisms of X. It thus follows from the
hypothesis that g acts by the identity on the homotopy groups of X. Now, we
observe that if X is a finite wedges of p-completed spheres and Y is any p-complete
spectrum, the map

HomHoSpp(X,Y )→ HomModπ∗(LpS)
(π∗(X), π∗(Y ))

is an isomorphism. In particular, we deduce that the map g must be homotopic to
the identity. �
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